已知关于x的方程.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.

已知关于x的方程.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.

题型:不详难度:来源:
已知关于x的方程
(1)若该方程有一根为2,求a的值及方程的另一根;
(2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.
答案
(1)a=,方程的另一根为;(2)当a=1,0,2时,方程仅有一个根,分别为0,1,-1.
解析

试题分析:(1)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;
(2)分两种情况探讨:①当a=1时,为一元一次方程;②当a≠1时,利用b2-4ac=0求出a的值,再代入解方程即可.
试题解析:(1)将x=2代入方程,得,解得:a=
将a=代入原方程得,解得:x1,x2=2.
∴a=,方程的另一根为.
(2)①当a=1时,方程为2x=0,解得:x=0.
②当a≠1时,由b2-4ac=0得4-4(a-1)2=0,解得:a=2或0. 
当a=2时, 原方程为:x2+2x+1=0,解得:x1=x2=-1;
当a=0时, 原方程为:-x2+2x-1=0,解得:x1=x2=1.
综上所述,当a=1,0,2时,方程仅有一个根,分别为0,1,-1.
举一反三
商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x元.
(1)填表(不需化简):
 
每天的销售量/台
每台销售利润/元
降价前
8
400
降价后
 
 
(2)商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?
题型:不详难度:| 查看答案
下列关于x的一元二次方程中,有两个不相等的实数根的方程是
A.x2+1=0B.x2-2x-2=0C.9x2-6x+1=0D.x2-x+2=0

题型:单选题难度:简单| 查看答案
设a、b是方程的两个不等的根,则a2+2a+b的值为       
题型:不详难度:| 查看答案
解方程
(1);(2) 
题型:不详难度:| 查看答案
方程经过配方后,其结果正确的是(    )
A.B.
C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.