如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分

如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分

题型:不详难度:来源:
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.

(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?
答案
(1)∵A、D关于点Q成中心对称,HQ⊥AB,
=90°,HD=HA,
,…………………………………………………………………………3分
∴△DHQ∽△ABC. ……………………………………………………………………1分

(2)①如图1,当时,
ED=,QH=
此时. …………………………………………3分
时,最大值
②如图2,当时,
ED=,QH=
此时. …………………………………………2分
时,最大值
∴y与x之间的函数解析式为
y的最大值是.……………………………………………………………………1分
(3)①如图1,当时,
若DE=DH,∵DH=AH=, DE=
=
显然ED=EH,HD=HE不可能; ……………………………………………………1分
②如图2,当时,
若DE=DH,=;  …………………………………………1分
若HD=HE,此时点D,E分别与点B,A重合,; ………………………1分
若ED=EH,则△EDH∽△HDA,
.  ……………………………………1分
∴当x的值为时,△HDE是等腰三角形.
(其他解法相应给分)
解析
(1)根据对称性可得HD=HA,那么可得∠HDQ=∠A,加上已有的两个直角相等,那么所求的三角形相似;
(2)利用BP在不同位置的不同取值,得到y关于x的函数关系式,利用二次函数的最值即可求得最大值;
(3)等腰三角形有两边相等,根据所在的不同位置再分不同的边相等解答.
举一反三
如图,已知DE∥BC,AD=5,DB=3,BC=9.9,∠B=50°,则∠ADE=     °,DE=               
题型:不详难度:| 查看答案
已知,如图,延长的各边,使得,顺次连接,得到为等边三角形.
求证:(1)
(2)为等边三角形.

题型:不详难度:| 查看答案
已知一个多边形的内角和为540°,则这个多边形为
A.三角形B.四边形C.五边形D.六边形

题型:不详难度:| 查看答案
如图,等腰三角形ABC的顶角为1200,腰长为10,则底边上的高AD=        
题型:不详难度:| 查看答案
如图,直线上有三个正方形,若的面积分别为5和11,则的面积为(  )
A.4B.6C.16D.55

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.