已知:如图,在△ABC中,AB=AC,AE是角平分线,BM 平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径。(1)

已知:如图,在△ABC中,AB=AC,AE是角平分线,BM 平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径。(1)

题型:北京中考真题难度:来源:
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM 平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径。
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=时,求⊙O的半径。
答案
解:(1)如图,连接OM,则OM=OB,
∴∠1=∠2,
∵BM平分∠ABC,
∴∠1=∠3,
∴∠2=∠3,
∴OM∥BC,
∴∠AMO=∠AEB,
在△ABC中,AB=AC,AE是角平分线,
∴AE⊥BC,
∴∠AEB=90°,
∴∠AMO=90°,
∴OM⊥AE,
∴AE与⊙O相切;(2)在△ABC中,AB=AC,AE是角平分线,
∴BE=BC,∠ABC=∠C,
∵BC=4,cosC=
∴BE=2,cos∠ABC=
在△ABE中,∠AEB=90°,

∴ 设⊙O的半径为r,则AO=6-r,
∵OM∥BC,
∴△AOM∽△ABE,

,解得
∴⊙O的半径为
举一反三
如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0),C(0,),延长AC到点D,使CD=AC,过D点作DE∥AB交BC的延长线于点E。
(1)求D点的坐标;
(2)作C点关于直线DE的对称点F,分别连接DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;
(3)设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在线段GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G 点位置的方法,但不要求证明)
题型:北京中考真题难度:| 查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,连接AC。
(1)求tan∠ACB的值;
(2)若M、N分别是AB、DC的中点,连接MN,求线段MN的长。
题型:上海中考真题难度:| 查看答案
如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m,如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为

[     ]

A.5m
B.6m
C.7m
D.8m
题型:甘肃省中考真题难度:| 查看答案
如图,两条笔直的公路AB、CD相交 于点O,∠AOC为36°,指挥中心M 设在OA路段上,与O地的距离为 18千米,一次行动中,王警官带队从O地出发,沿OC方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话。(参考数据:sin 36°≈0.59,cos36°≈0.81,tan36°≈0.73)
题型:吉林省中考真题难度:| 查看答案
如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是

[     ]

A.
B.4m
C.
D.8m
题型:河北省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.