在R上定义运算(b、c为实常数)。记,,。令。(Ⅰ)如果函数在处有极值,试确定b、c的值;(Ⅱ)求曲线上斜率为c的切线与该曲线的公共点;(Ⅲ)记的最大值为,若对

在R上定义运算(b、c为实常数)。记,,。令。(Ⅰ)如果函数在处有极值,试确定b、c的值;(Ⅱ)求曲线上斜率为c的切线与该曲线的公共点;(Ⅲ)记的最大值为,若对

题型:不详难度:来源:
R上定义运算bc为实常数)。记。令
(Ⅰ)如果函数处有极值,试确定bc的值;
(Ⅱ)求曲线上斜率为c的切线与该曲线的公共点;
(Ⅲ)记的最大值为,若对任意的bc恒成立,试示的最大值。
答案
(Ⅰ)
(Ⅱ)
(Ⅲ)
解析
R上运算的定义及函数的表达式,
可得
(Ⅰ)∵函数处有极值,∴

从而解得
但当时,
恒成立,
从而当时,单调递减,故不是极值点而是拐点。
所以要舍去。
时,则。当变化时,的变化情况如下表:




1


   ﹣
  
 ﹢
 
 ﹣

 ↘
极小值
 ↗
极大值
 ↘

∴当x=1时,在有极大值。因此
(Ⅱ)设x0是曲线上的斜率为c的切线与曲线的切点,则
,得x0=0或x0=2b,当x0=0时
x0=2b,故切线的方程为
,联立

联立
解得
综上所述,曲线上斜率为c的切线与该曲线的公共点为

(Ⅲ)记),
),
的对称轴为
(1)当时,,对称轴:x=b在区间外面,从而
上的最大值在区间端点处取得。
g(1),g(-1)中的最大者为,则
所以,而,故当
M>2。
(2)当时,,区间跨越对称轴:x=b
从而此时
因为,所以

①当时,,所以,因此


②当时,,所以,因此

综上所述,对,都有成立。
对任意的bc恒成立的的最大值为
举一反三
设曲线在点(1,1)处的切线与x轴的交点的横坐标为,令,则的值为               
题型:不详难度:| 查看答案
(Ⅰ)化简:;
(Ⅱ)已知:,求的值.
题型:不详难度:| 查看答案
 计算:.
题型:不详难度:| 查看答案
设曲线在点处的切线与直线垂直,则(   )
A.2B.C.D.

题型:不详难度:| 查看答案
设曲线在点处的切线与直线垂直,则       
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.