(本小题满分12分)设F是椭圆C:的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知.(1)   求椭圆C的标准方程;(2)   若过

(本小题满分12分)设F是椭圆C:的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知.(1)   求椭圆C的标准方程;(2)   若过

题型:不详难度:来源:
(本小题满分12分)
F是椭圆C的左焦点,直线l为其左准线,直线lx轴交于点P,线段MN为椭圆的长轴,已知
(1)   求椭圆C的标准方程;
(2)   若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN
(3)   求三角形ABF面积的最大值.
答案
(1)(2)略(3)3
解析
(1) ∵      ∴a = 4
又∵ | PM | =" 2" | MF |得
          
(2) 当AB的斜率为0时,显然满足题意
AB的斜率不为0时,设AB方程为
代入椭圆方程整理得



综上可知:恒有 ······················································ 9分
(3)

当且仅当(此时适合△>0的条件)取得等号.
∴三角形ABF面积的最大值是3   13分
举一反三
分别是椭圆的左、右焦点,与直线相切的交椭圆于点恰好是直线的切点.
(1)求该椭圆的离心率;
(2)若点到椭圆的右准线的距离为,过椭圆的上顶点A的直线与交于B、C两点,且,求λ的取值范围.
题型:不详难度:| 查看答案
已知椭圆方程,当的最小值时,椭圆的离心率 
题型:不详难度:| 查看答案
(本小题满分12分)已知椭圆C:过点,且长轴长等于4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是椭圆C的两个焦点,⊙O是以F1F2为直径的圆,直线l: y=kx+m与⊙O相切,并与椭圆C交于不同的两点AB,若,求的值
题型:不详难度:| 查看答案

(本题满分13分)
设椭圆的左、右焦点分别为F1与F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)
题型:不详难度:| 查看答案
已知椭圆P的中心O在坐标原点,焦点在轴上,且经过点A(0,),离心率为
(1)求椭圆P的方程;
(2)是否存在过点E(0,-4)的直线交椭圆P于两不同点,且满足,若存在,求直线的方程;若不存在,请说明理由。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.