解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):已知是椭圆上一点,,是椭圆的两焦点,且满足(Ⅰ)求椭圆方程;(Ⅱ)设、是椭圆上任两点,且直线、的斜

解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):已知是椭圆上一点,,是椭圆的两焦点,且满足(Ⅰ)求椭圆方程;(Ⅱ)设、是椭圆上任两点,且直线、的斜

题型:不详难度:来源:
解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):
已知是椭圆上一点,是椭圆的两焦点,且满足
(Ⅰ)求椭圆方程;
(Ⅱ)设是椭圆上任两点,且直线的斜率分别为,若存在常数使,求直线的斜率.
答案
(I);(II)
解析

试题分析:(I)根据,可知a=2,所以再把点A的坐标代入椭圆方程求出b的值,求出椭圆的方程.
(II)设直线AC的方程:,由,得:
点C,同理求出D的坐标,再利用斜率公式即可证明CD的斜率为定值.
(I)所求椭圆方程…………………3分;
(II)设直线AC的方程:,由,得:
点C…………………………..5分;
同理 ………………………..6分;
 
……………………8分;
要使为常数, +(1-)=0,
…………………………10分.
点评:椭圆上的点到两焦点的距离之和为定值,也就是常数2a,再根据其它条件建立关于b的方程,求出b即可得到椭圆的标准方程.
在证明CD的斜率为定值时,关键是求出点C,D的坐标,需要用直线方程与椭圆方程联立求解.
举一反三
(本题满分9分)已知顶点在原点,焦点在轴上的抛物线过点
(1)求抛物线的标准方程;
(2)过点作直线交抛物线于两点,使得恰好平分线段,求直线的方程
题型:不详难度:| 查看答案
(本题10分)已知,动点满足,设动点的轨迹是曲线,直线与曲线交于两点.(1)求曲线的方程;
(2)若,求实数的值;
(3)过点作直线垂直,且直线与曲线交于两点,求四边形面积的最大值.
题型:不详难度:| 查看答案
(本小题满分12分)已知椭圆上的任意一点到它的两个焦点的距离之和为,且其焦距为
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线与椭圆交于不同的两点A,B.问是否存在以A,B为直径
的圆 过椭圆的右焦点.若存在,求出的值;不存在,说明理由.
题型:不详难度:| 查看答案
直线与曲线相切于点,则的值为 (   )
A.-3B.9
C.-15 D.-7

题型:不详难度:| 查看答案
如图,过抛物线焦点的直线依次交抛物线与圆于点A、B、C、D,则的值是(   )

A.8              B.4             C.2                   D.1
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.