直线l与双曲线x22-y2=1的同一支相交于A,B两点,线段AB的中点在直线y=2x上,则直线AB的斜率为(  )A.4B.2C.12D.14

直线l与双曲线x22-y2=1的同一支相交于A,B两点,线段AB的中点在直线y=2x上,则直线AB的斜率为(  )A.4B.2C.12D.14

题型:不详难度:来源:
直线l与双曲线
x2
2
-y2=1
的同一支相交于A,B两点,线段AB的中点在直线y=2x上,则直线AB的斜率为(  )
A.4B.2C.
1
2
D.
1
4
答案
设A(x1,y1),B(x2,y2),
∵线段AB的中点在直线y=2x上,
y1+y2
2
=
x1+x2
2
×2
,即y1+y2=2(x1+x2),
把A(x1,y1),B(x2,y2)分别代入双曲线
x2
2
-y2=1
,得:





x12-2y12=2
x22-2y22=2
,∴(x1+x2)(x1-x2)-2(y1+y2)(y1-y2)=0,
∴k=
y1-y2
x1-x2
=
x1+x2
2(y1+y2)
=
1
4

故选:D.
举一反三
已知点A(-2,0),B(2,0),M(-1,0),直线PA,PB相交于点P,且它们的斜率之积为-
3
4

(1)求动点P的轨迹方程;
(2)试判断以PB为直径的圆与圆x2+y2=4的位置关系,并说明理由;
(3)直线PM与椭圆的另一个交点为N,求△OPN面积的最大值(O为坐标原点).
题型:不详难度:| 查看答案
已知椭圆C的中心在原点,焦点在x轴上,离心率e=
1
2
,一个顶点的坐标为(0,


3
)

(1)求椭圆C的方程;
(2)椭圆C的左焦点为F,右顶点为A,直线l:y=kx+m与椭圆C相交于M,N两点且


AM


AN
=0
,试问:是否存在实数λ,使得S△FMN=λS△AMN成立,若存在,求出λ的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知椭圆M、抛物线N的焦点均在x轴上的,且M的中心和M的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

x3-24


2
y-2


3
0-4


2
2
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为


2
2
,椭圆C上的点到左焦点F距离的最小值与最大值之积为1.
(1)求椭圆C的方程;
(2)直线l过椭圆C内一点M(m,0),与椭圆C交于P、Q两点.对给定的m值,若存在直线l及直线母x=-2上的点N,使得△PNQ的垂心恰为点F,求m的取值范围.
如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=2


2

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足


OA
+


OB
=t


OP
(O为坐标原点),当|


PA
-


PB
|<
2


5
3
时,求实数t的取值范围.