设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线率为2. (Ⅰ)求a,b的值; (Ⅱ)证明:f(x)≤2x-2.
题目
设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线率为2.
(Ⅰ)求a,b的值;
(Ⅱ)证明:f(x)≤2x-2.
答案
(Ⅰ)f'(x)=1+2ax+bx,由已知条件得:f(1)=0f/(1)=2,即1+a=01+2a+b=2解之得:a=-1,b=3(Ⅱ)f(x)的定义域为(0,+∞),由(Ⅰ)知f(x)=x-x2+3lnx,设g(x)=f(x)-(2x-2)=2-x-x2+3lnx,则g/(x)=−...
(Ⅰ)求出函数的导数,再利用f(1)=0以及f′(1)=2建立方程组,联解可得a,b的值;
(Ⅱ)转化为证明函数y=f(x)-(2x-2)的最大值不超过0,用导数工具讨论单调性,可得此函数的最大值.
导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.
本题着重考查导数的几何意义,以及利用导数讨论函数的单调性,求函数的最值,是一道常见的函数题.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点