若关于x的方程lg(ax)*lg(ax^2)=4有两个小于1的正根α,β,且满足|lgα-lgβ|≤2√3,求实数a的取值范围

若关于x的方程lg(ax)*lg(ax^2)=4有两个小于1的正根α,β,且满足|lgα-lgβ|≤2√3,求实数a的取值范围

题目
若关于x的方程lg(ax)*lg(ax^2)=4有两个小于1的正根α,β,且满足|lgα-lgβ|≤2√3,求实数a的取值范围
答案
由题意 ,真数 ax >0 ,又x是正实数 ,故lg(ax) = lga + lgx ,
lg(ax^2) = lga + 2lgx ,即a也大于零 .原方程可化为:
[lga + lgx][lga + 2lgx] = 4 ,因为x < 1 ,故lgx < 0 ,令t = lgx ,
则题意相当于:方程[t + lga][2t + lga] = 4有两个负数根 ,展开并根据韦达定理 ,t1 + t2 = (-3lga)/2 < 0 ,ti·t2 = [(lga)^2 - 4]/2 > 0 ,得到:
lga > 2 ,a > 100 ,则可令t1 = lgα ,t2 = lgβ由0《|lgα-lgβ|≤2√3 ,
|lgα-lgβ|^2≤12 ,(lgα + lgβ)^2 - 4lgα·lgβ 《 12 ,由韦达定理 ,
整理得到 :(lga)^2 《 16 ,由前述lga > 0 ,得到 :lga 《 4 ,故
a 《 10000 ,所以a的范围是:(100 ,10000】
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.