如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0

如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0

题目
如果f(x)为偶函数.且f `(0)存在,证明 f ` (0) = 0
如果f(x)为偶函数,且f'(x)存在.证明:f'(0)=0.
是不是要用到 偶函数的导数是奇函数的定理啊?
f(-x)=f(x)
若f'(x)存在,对上面的等式两边求导得
[f(-x)]'=f'(x)
这个东西 我可以理解成 函数的相等 他们的导数也相等吗?
我看的同济第五版的书 是证明f0=0 不是fx=0
=-lim[f(-x)-f(0)]/(-x)
这个怎么来的?
答案
如果f(x)为偶函数.且f `(0)存在,
f'(0)=lim[f(x)-f(0)]/x;(x→0)
=lim[f(-x)-f(0)]/x
=-lim[f(-x)-f(0)]/(-x)
=-f'(0)
f'(0)=0.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.