试说明:四个连续整数的乘积与1的和必定是一个完全平方数

试说明:四个连续整数的乘积与1的和必定是一个完全平方数

题目
试说明:四个连续整数的乘积与1的和必定是一个完全平方数
答案
假设这4个数是:
(x-1),x,(x+1),(x+2)
那么:
(x-1)x(x+1)(x+2)+1
=(x^2-1)(x^2+2x)+1
=x^4+2*x^3-x^2-2x+1
(x^2+x-1)^2.
所以四个连续整数的积加1,一定是完全平方数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.