已知函数f(x)=ax^2-1.设集合A={x|f(x)=x},集合B={x|f[f(x)]=x},且A=B不等于空集,求实数a的取值范围

已知函数f(x)=ax^2-1.设集合A={x|f(x)=x},集合B={x|f[f(x)]=x},且A=B不等于空集,求实数a的取值范围

题目
已知函数f(x)=ax^2-1.设集合A={x|f(x)=x},集合B={x|f[f(x)]=x},且A=B不等于空集,求实数a的取值范围
答案
由两个集合的关系可以看出,f(x)的值就等于x.所以x=ax2-1.ax2-x-1=0.当a不等于0,f(x)是二次函数.判别式=1+4a>=0.a>=-1/4 另一种情况是a=0,此时f(x)是常值函数.结论:a>=-1/4(包含了a=0的情况)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.