根据Nocomachns定理,任何一个正整数n的立方一定可以表示为n连续的奇数的和.

根据Nocomachns定理,任何一个正整数n的立方一定可以表示为n连续的奇数的和.

题目
根据Nocomachns定理,任何一个正整数n的立方一定可以表示为n连续的奇数的和.
例如:1^3=1
2^3=3+5
3^3=7+9+11
4^3=13+15+17+19
在这里,若将每一个式中的最小奇数称为X,那么当给出n之后,请写出X与n之间的关系表达式:_______________________
教我一下吧,我真的看也看不懂的类!
答案
x(n+1)-xn=2n
x(n+1)=xn+2n
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.