数学二次函数当1≤x≤2时,求函数y=-x的平方-x+2的最大值和最小值
题目
数学二次函数当1≤x≤2时,求函数y=-x的平方-x+2的最大值和最小值
答案
y = - x ² - x + 2
= -(x ² + x + 1 / 4)+ 2 + 1 / 4
= - (x + 1 / 2)² + 9 / 4
∴ 函数对称轴为:x = - 1 / 2
∴ 函数 y 在 1 ≤ x ≤ 2 随 x 的增大而减少
∴ 当 x = 1 时 y 有最大值:- (1 + 1 / 2)² + 9 / 4
= - (3 / 2)² + 9 / 4
= - 9 / 4 + 9 / 4
= 0
当 x = 2 时 y 有最小值:- (2 + 1 / 2)² + 9 / 4
= - (5 / 2)² + 9 / 4
= - 25 / 4 + 9 / 4
= - 16 / 4
= - 4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点