函数f(x)=2^x,X1,X2属于R,且X1≠X2,证明:1/2(f(X1)+f(X2))>f((X1+X2)/2)

函数f(x)=2^x,X1,X2属于R,且X1≠X2,证明:1/2(f(X1)+f(X2))>f((X1+X2)/2)

题目
函数f(x)=2^x,X1,X2属于R,且X1≠X2,证明:1/2(f(X1)+f(X2))>f((X1+X2)/2)
答案
X1≠X2
f(x1)≠f(x2)
1/2(f(X1)+f(X2))-f((X1+X2)/2)
=1/2(2^x1+2^x2)-2^[(x1+x2)/2]
=1/2{2^x1+x^x2-2*2^[(x1+x2)/2]}
=1/2[2^(x1/2)-2^(x2/2)]^2>0
1/2(f(X1)+f(X2))>f((X1+X2)/2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.