定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,a=f(3),b=f(2),c=f(2),则a,b,c大小关系是(  ) A.a>b>c B.a>c>b C.b>c

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,a=f(3),b=f(2),c=f(2),则a,b,c大小关系是(  ) A.a>b>c B.a>c>b C.b>c

题目
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上单调递增,a=f(3),b=f(
2
),c=f(2),则a,b,c大小关系是(  )
A. a>b>c
B. a>c>b
C. b>c>a
D. c>b>a
答案
由条件f(x+1)=-f(x),可以得:f(x+2)=f((x+1)+1)=-f(x+1)=f(x),所以f(x)是个周期函数.周期为2.又因为f(x)是偶函数,所以图象在[0,1]上是减函数.a=f(3)=f(1+2)=f(1),b=f(2)=f(2-2)...
先根据条件推断出函数为以2为周期的函数,根据f(x)是偶函数,在[-1,0]上单调递增推断出在[0,1]上是减函数.减函数,进而利用周期性使a=f(1),b=f(2-
2
),c=f(2)=f(0)进而利用自变量的大小求得函数的大小,则a,b,c的大小可知.

函数单调性的性质;函数奇偶性的性质;函数的周期性.

本题主要考查了函数单调性,周期性和奇偶性的应用.考查了学生分析和推理的能力.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.