证明不等式:x/(1+x)

证明不等式:x/(1+x)

题目
证明不等式:x/(1+x)
答案
先看右边:
两相除,再同时去以e为底指数,之后对e^x作麦克劳琳展开(其实就是证明e^x的增长速度大于1+x)
ln(1+x)/x=(1+x)/e^x=(1+x)/(1+x+x^2/2+x^3/6+.)<1
所以ln(1+x)在看左边:
在x=0时x/(1+x)=ln(1+x)=0;
当x>0时
对x/(1+x)和ln(1+x)分别求导数,
[1/(1+x)]'=[(1+x)-x/(1+x)^2]=1/[(1+x)^2]
[ln(1+x)]'=[1/(1+x)]
两导数作比:[1/(1+x)]'/[ln(1+x)]'=1/[(1+x)^2]/[1/(1+x)]=1/(1+x)<1
所以,在x>0时,x/(1+x)的增长速度小于ln(1+x),而在x=0出两者相等.
所以 x/(1+x)证毕.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.