证明lim(n→∞){n-根号下n^2-n}=1/2

证明lim(n→∞){n-根号下n^2-n}=1/2

题目
证明lim(n→∞){n-根号下n^2-n}=1/2
答案
n-√(n^2-n)
=[n-√(n^2-n)] * [n+√(n^2-n)] / [n+√(n^2-n)]
而显然
[n-√(n^2-n)] * [n+√(n^2-n)]
=n^2 -(n^2-n)
=n
所以
原极限
=lim(n->∞) n/ [n+√(n^2-n)] 分子分母同时除以n
=lim(n->∞) 1/ [1+√(1- 1/n)]
显然n趋于无穷时,1/n趋于0,即分母1+√(1- 1/n)趋于2
故得到证明
原极限
=lim(n->∞) 1/ [1+√(1- 1/n)]
=1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.