在等比数列{an}中,对任意自然数n,有a1+a2+…+an=2^n-1,则(a1)^2+(a2)^2+…+(an)^2=?

在等比数列{an}中,对任意自然数n,有a1+a2+…+an=2^n-1,则(a1)^2+(a2)^2+…+(an)^2=?

题目
在等比数列{an}中,对任意自然数n,有a1+a2+…+an=2^n-1,则(a1)^2+(a2)^2+…+(an)^2=?
答案
在等比数列{an}中,对任意自然数n,有a1+a2+…+an=2^n-1即Sn=2^n-1所以an=Sn-Sn-1=(2^n-1)-[2^(n-1)-1]=2^(n-1)所以(an)^2=[2^(n-1)]^2=4^(n-1)即{(an)^2}是以1为首项,4为公比的等比数列所以(a1)^2+(a2)...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.