数列{an}的通项公式为an=(n+1)×0.9*n,是否存在这样的正整数N使得对于任意的正整数n有an≤aN成立?证明结论

数列{an}的通项公式为an=(n+1)×0.9*n,是否存在这样的正整数N使得对于任意的正整数n有an≤aN成立?证明结论

题目
数列{an}的通项公式为an=(n+1)×0.9*n,是否存在这样的正整数N使得对于任意的正整数n有an≤aN成立?证明结论
答案
令An+1/An=1
=[(n+2)×0.9^(n+1)]/[(n+1)×0.9^n]
=0.9×(n+2)/(n+1)
解得n=8
即A8=A9,等价于当n=8或9时,数列获得最大值
N为8或9
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.