证明在数列11、111、1111、11111、……中,没有一个数是整数的平方?

证明在数列11、111、1111、11111、……中,没有一个数是整数的平方?

题目
证明在数列11、111、1111、11111、……中,没有一个数是整数的平方?
答案
假设有整数的平方是111111……的形式,这个整数必然是奇数,令为2K+1
(2K + 1)^2 = 4K^2 + 4K + 1 = 11111……1
也就是说
4K^2 + 4K = 11111……10
等号前能被4整除,等号后只能被2整除,不成立.
因此不存在这样的整数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.