如果A^k=0,证明(E-A)^(-1)=E+A+A^2+.+A^(k-1).

如果A^k=0,证明(E-A)^(-1)=E+A+A^2+.+A^(k-1).

题目
如果A^k=0,证明(E-A)^(-1)=E+A+A^2+.+A^(k-1).
答案
只需证明(E-A)[E+A+A^2+.+A^(k-1)]=E,由于矩阵和单位矩阵E的乘法有可交换性,即AE=EA=A,因此乘法公式a^k-b^k=(a-b)[a^(n-1)+a^(n-2)b...+b^(n-1)]对于矩阵A和E成立,所以E^k-A^k=(E-A)[E^(n-1)+E^(n-2)A...+A^(n-1)],...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.