如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm. (1)求证:四边形ABFE是等腰梯形; (2)求A
题目
如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作
EF∥AB,交AD于点E,CF=4cm.
(1)求证:四边形ABFE是等腰梯形;
(2)求AE的长.
答案
(1)证明:过点D作DM⊥AB,
∵DC∥AB,∠CBA=90°,
∴四边形BCDM为矩形.
∴DC=MB.
∵AB=2DC,
∴AM=MB=DC.
∵DM⊥AB,
∴AD=BD.
∴∠DAB=∠DBA.
∵EF∥AB,AE与BF交于点D,即AE与FB不平行,
∴四边形ABFE是等腰梯形.
(2)∵DC∥AB,
∴△DCF∽△BAF.
∴
=
=
.
∵CF=4cm,
∴AF=8cm.
∵AC⊥BD,∠ABC=90°,
在△ABF与△BCF中,
∵∠ABC=∠BFC=90°,
∴∠FAB+∠ABF=90°,
∵∠FBC+∠ABF=90°,
∴∠FAB=∠FBC,
∴△ABF∽△BCF(AA),即
=
,
∴BF
2=CF•AF.
∴BF=4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
|