如图,△ABC中,∠ABC=60°,AD,CE分别为BC,AB上的高,F为AC的中点,试判断△DEF的形状,并证明你的结论.

如图,△ABC中,∠ABC=60°,AD,CE分别为BC,AB上的高,F为AC的中点,试判断△DEF的形状,并证明你的结论.

题目
如图,△ABC中,∠ABC=60°,AD,CE分别为BC,AB上的高,F为AC的中点,试判断△DEF的形状,并证明你的结论.
答案
连接EF,△DEF为等边三角形,由∠ABC=60°,
易得:
BE
BC
BD
AB
1
2

∴△BDE∽△BAC,
DE
AC
BD
AB
1
2

∴DE=
1
2
AC.
又∵F为中点,
∴在Rt△ADC中,DF=
1
2
AC,在Rt△ACE中,EF=
1
2
AC.
所以DE=DF=EF.
即:△DEF为等边三角形.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.