已知函数f[x]=x²减[2a+1]x+alnx 当a=1时函数f[x]的单调增区间 求函数f[x]在区间[1,e]上的最小值

已知函数f[x]=x²减[2a+1]x+alnx 当a=1时函数f[x]的单调增区间 求函数f[x]在区间[1,e]上的最小值

题目
已知函数f[x]=x²减[2a+1]x+alnx 当a=1时函数f[x]的单调增区间 求函数f[x]在区间[1,e]上的最小值
答案
f'(x)=2x-2a-1+a/x
a=1
递增则f'(x)=2x-3+1/x>0
定义域是x>0
两边乘x
2x²-3x+1=(2x-1)(x-1)>0
所以增区间(0,1/2),(1,+∞)
f'(x)=2x-2a-1+a/x=0
2x²-(2a+1)x+a=0
(2x-1)(x-a)=0
x=1/2,x=a
a1/2,f'(x)>0,递增,最小f(1)
1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.