用比较审敛法判定下列级数的敛散性

用比较审敛法判定下列级数的敛散性

题目
用比较审敛法判定下列级数的敛散性
∑(1/(n^(1/2)+n^(1/3))
∑上是无穷符号,下是n=1
答案
因为1/n^(1/2)>1/n (n=1,2,3,...)
而∑1/n发散,由比较审敛法知∑1/n^(1/2)发散,即∑1/[2n^(1/2)]发散
又因为1/(n^(1/2)+n^(1/3)>1/[2n^(1/2)] (n=1,2,3,...)
由比较审敛法知∑[1/(n^(1/2)+n^(1/3)]发散
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.