求x→0时lim[1/x-1/(e^x-1)]的极限

求x→0时lim[1/x-1/(e^x-1)]的极限

题目
求x→0时lim[1/x-1/(e^x-1)]的极限
答案
x→0,lim[1/x-1/(e^x-1)]=lim[(e^x-1-x)/x(e^x-1)]
这个0/0型的,运用罗比达可以得到结果,但是我运用的是等价无穷小和泰勒展开来解题的,
e^x=1+x+x^2/2+……+x^n/n!n->oo
对于本题,展开到二阶即可,因为分母e^x-1~x,在x->0的时候.
所以,极限为:x→0时lim[1/x-1/(e^x-1)]=lim[x^2/2+o(x^2)]/x^2=1/2+0=1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.