已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.
题目
已知点P在以坐标轴为对称轴的椭圆上,且P到两焦点的距离分别为5、3,过P且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.
答案
设所求的椭圆方程为
+
=1(a>b>0)或
+
=1(a>b>0),
由已知条件得
,
a=4,c=2,b
2=12.
故所求方程为
+
=1或
+
=1.
先假设出椭圆的标准形式,再由P到两焦点的距离分别为5、3得到2a=5+3得到a的值,结合过P且与长轴垂直的直线恰过椭圆的一个焦点,可求得c的值,进而可求得椭圆的方程.
椭圆的简单性质;椭圆的标准方程.
本题主要考查椭圆的基本性质的运用.椭圆的基本性质是高考的重点内容,一定要熟练掌握并能够灵活运用.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点