是否存在常数p、q使得x4+px2+q能被x2+2x+5整除?如果存在,求出p、q的值,否则请说明理由.

是否存在常数p、q使得x4+px2+q能被x2+2x+5整除?如果存在,求出p、q的值,否则请说明理由.

题目
是否存在常数p、q使得x4+px2+q能被x2+2x+5整除?如果存在,求出p、q的值,否则请说明理由.
答案
假设存在,则说明x4+px2+q能被x2+2x+5整除,
可设另一个因式是x2+mx+n,
∴(x2+2x+5)(x2+mx+n)=x4+px2+q,
即有
x4+(m+2)x3+(n+2m+5)x2+(2n+5m)x+5n=x4+px2+q,
m+2=0
n+2m+5=p
2n+5m=0
5n=q

解上面的方程组,得
m=−2
n=5
p=6
q=25

∴存在常数p、q使得x4+px2+q能被x2+2x+5整除.
故所求p=6,q=25.
假设存在,则说明x4+px2+q能被x2+2x+5整除,可设另一个因式是x2+mx+n,于是有(x2+2x+5)(x2+mx+n)=x4+px2+q,可把等式的左边展开并合并同类项,利用等式的对应项相等可得关于m、n、p、q的方程组,解即可,若p、q都是常数,则说明存在,否则就是不存在.

整式的除法.

本题考查的是整式的除法,可利用乘法是除法的逆运算计算,其实就是待定系数法.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.