请教关于圆锥曲线的题目
题目
请教关于圆锥曲线的题目
已知抛物线y2=4x,直线L交抛物线于A(x1,y1),B(x2,y2)两不同点,若L‘是过点M(2,3/2)且垂直于x轴的一条直线是否存在L,使得AB被L'平分,若存在,求出L的斜率的;若不存在,请说明理由.
答案
【①】易知,直线L’的方程为x=2.
【②】∵弦AB的两个端点A,B均在抛物线y²=4x上.
∴可设坐标A(a²,2a),B(b²,2b).
易知,此时a≠b,否则点A和B重合.
同时,a+b≠0.否则,两点关于x轴对称,此时直线L的斜率不存在.
a≠b,且a+b≠0.∴由斜率公式可知,直线L的斜率k=2/(a+b).
【③】由“中点坐标公式”可知,弦AB的中点P的横纵坐标分别为(a²+b²)/2,(a+b).
【④】由题设“弦AB被直线L′平分”可知,弦AB的中点P必在直线L′:x=2上.
∴a²+b²=4.且同时有-2√2<a+b<2√2.即0<|a+b|<2√2.
再由基本不等式√[2(a²+b²)]≥|a+b|.及a²≠b²可知,|a+b|<2√2.
∴应该有0<|a+b|<2√2.∴1/|a+b|>(√2)/4.
∴2/|a+b|>(√2)/2.
【⑤】由k=2/(a+b)及2/|a+b|>(√2)/2.可知,|k|>√2/2.
∴k∈(-∞,- √2/2) ∪(√2/2,+ ∞)
即直线L的斜率k的取值范围是(-∞,- √2/2) ∪(√2/2,+ ∞).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 跟走意思相近的词语有哪些?
- 4个袋中分别装着苹果或梨.它们装的个数分别是20个、9个、8个、17个.这4个袋中只有1袋梨.哪袋是梨?
- 电池用久了电动势变小,那内阻会变大吗?
- 保险丝的选用
- 照样子,把句子写具体.⑴他声音真响啊,( ).⑵我们
- 在等差数列中,a2+a5+a8=9,a3a5a7=-21,则a11的值
- 求一编关于Bill Gates 完形填空
- 春之色为冷的绿,如碧波,如嫩绿,贮满希望之情;秋之色为热的赤,如夕阳,如红叶,标志着事物的终极.
- by后加交通工具,是不是交通工具前不可有冠词和修饰词,而且不可以是负数?
- 求48音标的对应字母