已知a,b,c,d均为实数,且ad-bc=1,a2+b2+c2+d2-ab+cd=1,则abcd= _ .

已知a,b,c,d均为实数,且ad-bc=1,a2+b2+c2+d2-ab+cd=1,则abcd= _ .

题目
已知a,b,c,d均为实数,且ad-bc=1,a2+b2+c2+d2-ab+cd=1,则abcd= ___ .
答案
∵a2+b2+c2+d2-ab+cd=1,
且ad-bc=1(1),
∴a2+b2+c2+d2-ab+cd=ad-bc,
∴2a2+2b2+2c2+2d2-2ab+2cd=2ad-2bc,
∴(a-b)2+(c+d)2+(a-d)2+(b+c)2=0,
∴a-b=c+d=a-d=b+c=0,
∴a=b=d=-c(2),
把(2)代入(1)得:a2+a2=1,
a2=
1
2

∴abcd=a•a•(-a)•a=-a4=-
1
4

故答案为:-
1
4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.