在三棱锥P-ABC中,PA=PB=PC=3,侧棱PA与底面ABC所成的角为60°,则该三棱锥外接球的体积为_.
题目
在三棱锥P-ABC中,PA=PB=PC=
,侧棱PA与底面ABC所成的角为60°,则该三棱锥外接球的体积为______.
答案
过点P作PH⊥平面ABC于H,
则∵AH是PA在平面ABC内的射影,
∴∠PAH是直线PA与底面ABC所成的角,得∠PAH=60°,
∴Rt△PAH中,AH=PAcos60°=
,PH=PAsin60°=
,
设三棱锥外接球的球心为O,∵PA=PB=PC,
∴P在平面ABC内的射影H是△ABC的外心,
由此可得,外接球心O必定在PH上,连接OA、OB、OC
∵△POA中,OP=OA,
∴∠OAP=∠OPA=30°,可得PA=
OA=
∴三棱锥外接球的半径R=OA=1.
因此该三棱锥外接球的体积为V=
πR
3=
π,
故答案为:
π.
过点P作PH⊥平面ABC于H,可得∠PAH是直线PA与底面ABC所成的角,得∠PAH=60°.由PA=PB=PC,得外接球心O必定在PH上,连接OA,可得△POA是底角等于30°的等腰三角形,从而得到外接球的半径R=OA=1,再用球的体积公式可得该三棱锥外接球的体积.
球的体积和表面积.
本题给出三棱锥的三条侧棱两两相等,在已知一条侧棱与底面所成角的情况下求外接球的体积,着重考查了直线与平面所成角的定义、球内接多面体和球体积的求法等知识,属于中档题.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点