当n为正整数时,两个连续奇数的平方差一定是8的倍数

当n为正整数时,两个连续奇数的平方差一定是8的倍数

题目
当n为正整数时,两个连续奇数的平方差一定是8的倍数
答案
证明:当n是正整数时,则两个连续奇数分别是2n-1和2n+1
∴ (2n+1)^2-(2n-1)^2
=(2n+1+2n-1)(2n+1-2n+1)
=4n×2
=8n
因为上式中含有因数8,而n又是正整数
所以8n能被8整除
∴ 这两个连续奇数的平方差是8的倍数.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.