函数y=4x²+8x+136(1+x)的最小值为多少?

函数y=4x²+8x+136(1+x)的最小值为多少?

题目
函数y=4x²+8x+136(1+x)的最小值为多少?
答案
y=(4x^2+8x+13)/6(x+1)
6y(x+1)=4x^2+8x+13
4x^2+(8-6y)x+13-6y=0
方程有解,则判别式>=0
即:(8-6y)^2-4*4(13-6y)>=0
64-96y+36y^2-208+96y>=0
36y^2>=144
y^2>=4
y>=2或y
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.