a,b,c都是实数,且ab +bc +ac=1,为什么选择(a +b+ c)的平方大于等于3呢?

a,b,c都是实数,且ab +bc +ac=1,为什么选择(a +b+ c)的平方大于等于3呢?

题目
a,b,c都是实数,且ab +bc +ac=1,为什么选择(a +b+ c)的平方大于等于3呢?
你们都是知道答案 倒着推 由前面推后面?
答案
理由是这样的
由于(a-b)^2+(a-c)^2+(b-c)^2≫0
即a^2+b^2+c^2≫ab+ac+bc=1
从而(a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)≫3(ab+ac+bc)=3
即为所得
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.