顺次连接任意一个四边形、矩形、菱形、等腰梯形的四边中点,所得四边形依次是_.

顺次连接任意一个四边形、矩形、菱形、等腰梯形的四边中点,所得四边形依次是_.

题目
顺次连接任意一个四边形、矩形、菱形、等腰梯形的四边中点,所得四边形依次是______.
答案
(1)顺次连接任意一个四边形的四边中点,所得四边形是平行四边形.理由如下:
如图,已知任意四边形ABCD,E、F、G、H分别是各边中点.连接BD.
∵在△ABD中,E、H是AB、AD中点,
∴EH∥BD,EH=
1
2
BD.
∵在△BCD中,G、F是DC、BC中点,
∴GF∥BD,GF=
1
2
BD,
∴EH=GF,EH∥DF,
∴四边形EFGH为平行四边形.
(2)顺次连接任意一个矩形的四边中点,所得四边形是菱形.理由如下:
如图,连接AC、BD.
在△ABD中,
∵AH=HD,AE=EB,
∴EH=
1
2
BD,
同理FG=
1
2
BD,HG=
1
2
AC,EF=
1
2
AC,
又∵在矩形ABCD中,AC=BD,
∴EH=HG=GF=FE,
∴四边形EFGH为菱形.
(3)顺次连接任意一个菱形的中点得出的四边形是矩形.理由如下:
∵E,F是中点,
∴EH∥BD,
同理,EF∥AC,GH∥AC,FG∥BD,
∴EH∥FG,EF∥GH,
则四边形EFGH是平行四边形.
又∵AC⊥BD,
∴EF⊥EH,
∴平行四边形EFGH是矩形.
(4)顺次连接任意一个等腰梯形的四边中点,所得四边形是菱形.理由如下:
连接AC、BD.
∵E、F、G、H分别是AB、BC、CD、DA的中点
∴EF=
1
2
AC,GH=
1
2
AC,EH=
1
2
BD,GF=
1
2
BD
∵AB=CD
∴AC=BD
∴EF=GH=EH=GF
∴四边形EFGH菱形.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.