求曲线y=lnx,直线y=1,y=2和x=0所围成的平面图形的面积.

求曲线y=lnx,直线y=1,y=2和x=0所围成的平面图形的面积.

题目
求曲线y=lnx,直线y=1,y=2和x=0所围成的平面图形的面积.
答案
y=lnx,直线y=1,y=2和x=0
y=lnx与y=1 ==>交点A(e,1)
y=lnx与y=2 ==>交点B(e²,2)
y=lnx ==>x=e^y
S=ʃ(1,2) e^y dy=e^y|(1,2)=e²-e
∴所围成的平面图形的面积为e²-e
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.