设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0(矩阵),证明R(A)

设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0(矩阵),证明R(A)

题目
设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0(矩阵),证明R(A)
答案
用反证法.
若R(A) =N,则A可逆.
A^(-1)[AB] = A^(-1)*0 = 0,
又A^(-1)[AB] = B ,因此,B=0.与B不等于0矛盾.
故,R(A)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.