已知A为2n+1阶正交矩阵,且lAl=1,试证A必有特征值1
题目
已知A为2n+1阶正交矩阵,且lAl=1,试证A必有特征值1
答案
证明:因为 A为正交矩阵,所以 AA^T = E.
所以 |A-E|
= |A - AA^T|
= |A(E-A^T)|
= |A||E-A^T|
= |(E-A)^T|
= |E-A|
= |-(A-E)|
= (-1)^(2n+1) |A-E|
= -|A-E|.
所以 |A-E|=0
所以1是A的特征值.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点