已知抛物线x2=4y的焦点为F,A.B是曲线上两动点,且向量AF=λ向量FB(λ>0).过A.B两点分别做抛物线的切线.设其交点为M
题目
已知抛物线x2=4y的焦点为F,A.B是曲线上两动点,且向量AF=λ向量FB(λ>0).过A.B两点分别做抛物线的切线.设其交点为M
1)若同时点P满足PA=λPB,求点P的纵坐标
就这一小题
答案
抛物线x^2=4y的焦点F(0,1)
设AB方程为y=kx+1,代入x^2=4y
得:x^2=4(kx+1)
即x^2-4kx-4=0
设A(x1,y1),B(x2,y2)
那么x1+x2=4k,x1x2=-4
向量AF=λ向量FB(λ>0)
∴(-x1,1-y1)=λ(-x2,1-y2)
∴x1=λx2
对y=1/4*x^2求导
y'=1/2*x
∴曲线在A处切线方程为
y=1/2x1(x-x1)+x²1/4
曲线在B处切线方程为
y=1/2x2(x-x2)+x²2/4
两式相减:
1/2(x1-x2)x-1/4(x²1-x²2)=0
∵x1≠x2
∴x=(x1+x2)/2
y= 1/4*x1(x2-x1)+x²1/4
=1/4*x1x2
=-1
即两条切线交点纵坐标为-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- The bus was so crowed that I could hardly get on.
- 帮我找20条各类名言警句
- 日记本上的
- 酒的发酵过程
- 连词成句 winter,I,skating,and,in,and,snowmen,go,make(.)
- 被动语态可以这样变吗?
- 叙述反函数存在定理的内容
- Pandas are my favourite animals.还是Pandas are my favourite animal.
- 要从含盐20%的盐水80克里蒸发掉多少克水分制成含盐50%的盐水
- 在一个比例里,两个内项互为倒数,其中一个外项是2又3分之一,另一个外项是()
热门考点