设向量组a1a2a3线性相关,a2a3a4线性无关,证明向量a1必可表示为a2,a3,a4的线性组合

设向量组a1a2a3线性相关,a2a3a4线性无关,证明向量a1必可表示为a2,a3,a4的线性组合

题目
设向量组a1a2a3线性相关,a2a3a4线性无关,证明向量a1必可表示为a2,a3,a4的线性组合
答案
证明:
∵a1,a2,a3 线性相关
∴存在不全为0的数b1,b2,b3使
b1a1+b2a2+b3a3=0
又a2,a3,a4 线性无关
∴a2,a3线性无关
∴若b1=0,则b2a2+b3a3=0
∴b2=b3=0
与b1,b2,b3不全为0矛盾
∴b1≠0
∴a1+(b2/b1)a2+(b3/b1)a3=0
即 a1=-(b2/b1)a2-(b3/b1)a3
∴a1可表示为a2,a3,a4的线性组合
证毕
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.