1的平方加2的平方....一直加到n的平方和是多少?有公式吗?
题目
1的平方加2的平方....一直加到n的平方和是多少?有公式吗?
有公式但如何推导呢?
答案
平方和公式n(n+1)(2n+1)/6
即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:N^2=N的平方)
证明1+4+9+…+n^2=N(N+1)(2N+1)/6
证法一(归纳猜想法):
1、N=1时,1=1(1+1)(2×1+1)/6=1
2、N=2时,1+4=2(2+1)(2×2+1)/6=5
3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6
则当N=x+1时,
1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2
=(x+1)[2(x2)+x+6(x+1)]/6
=(x+1)[2(x2)+7x+6]/6
=(x+1)(2x+3)(x+2)/6
=(x+1)[(x+1)+1][2(x+1)+1]/6
也满足公式
4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证.
证法二(利用恒等式(n+1)^3=n^3+3n^2+3n+1):
(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
.
3^3-2^3=3*(2^2)+3*2+1
2^3-1^3=3*(1^2)+3*1+1.
把这n个等式两端分别相加,得:
(n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,
由于1+2+3+...+n=(n+1)n/2,
代人上式得:
n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n
整理后得:
1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 物体作匀加速直线运动先后经过ABC三点,经过AB段所需时间为t,经过BC段所用时间为t/2.若AB=BC=s,则物体运动全过程的平均速度为--,运动的加速度大小为--
- 9600000平方千米=多少万平方米?
- 1003 乘1002分之1001=?
- 天空中有许多风筝用英语怎么说
- 已知椭圆E:x^2/a^2+y^2/b^2=1的离心率为1/2,直线x=2被椭圆E截得的弦长为6,设F的椭圆E的右焦点,
- 雷锋的事迹 250字
- we hope you`ll have a good time at the party. we hope you`ll______ _______at the party.
- 方程X-3分之X+3-X分之2=2怎么解?
- 一桶油,第一次倒出1/5,第二次倒出5千克,第三次倒出1/3,还剩25/3千克,这桶油原来有多少千克?
- 将一勺热水倒入盛有一些冷水的保温容器内,使得冷水温度升高5℃.然后又向保温容器内倒入同样一勺热水,水的温度又上升了3℃.如果再连续倒入10勺同样的热水,则保温容器内的水温度
热门考点