四面体P-ABC中,已知PA=3,PB=PC=2,角APB=角BPC=角CPA=60°,(1)求证PA⊥BC(2)面PBC垂直面ABC

四面体P-ABC中,已知PA=3,PB=PC=2,角APB=角BPC=角CPA=60°,(1)求证PA⊥BC(2)面PBC垂直面ABC

题目
四面体P-ABC中,已知PA=3,PB=PC=2,角APB=角BPC=角CPA=60°,(1)求证PA⊥BC(2)面PBC垂直面ABC
答案
取BC中点D,连结PD和AD,
PC=PB=2,《CPB=60度,三角形PBC是正三角形,
故PD⊥BC,
〈APB=〈APC=60度,
PC=PB,PA=PA,
△PAC≌△PAB,
AC=AB,
故AD⊥BC,
PD∩AD=D,
BC⊥平面ADP,
AP∈平面APD,
∴PA⊥BC.
2、根据余弦定理,可求出AB=√7,BC=2,BD=1,
根据勾股定理,AD=√6,
PD=√3BD=√3,
AP=3,
AD^2+PD^2=9,
AP^2=9,
根据勾股逆定理,
△ADP是RT△,
由上所知,PD⊥BC,AD⊥BC,
〈ADP=90度,〈ADP是二面角A-BC-P的平面角,
∴平面PBC⊥平面ABC.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.