解∵0°<β<45°<α<135°,
∴-90°<45°-α<0°,135°<135+β<180°
∵
cos(45°−α)=,∴
sin(45°−α)=−,
∵
sin(135°+β)=,∴
cos(135°+β)=−∴sin(α+β)=-cos[(135°+β)-(45°-α)]
=-[cos(135°+β)cos(45°-α)+sin(135°+β)sin(45°-α)]
=
−[(−)+(−)]=cos(α-β)=-cos[(135°+β)+(45°-α)]
=[cos(135°+β)cos(45°-α)-sin(135°+β)sin(45°-α)]
=-
[(−)−(−)]=