如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF. 求证:(1)CF=EB;    (2)∠CBA+∠AFD=180°.

如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF. 求证:(1)CF=EB;    (2)∠CBA+∠AFD=180°.

题目
如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.
求证:(1)CF=EB;
   (2)∠CBA+∠AFD=180°.
答案
(1)∵∠C=90°,
∴DC⊥AC.
∵AD是∠BAC的平分线,DE⊥AB,
∴DC=DE.
在Rt△DCF和Rt△DEB中
BD=DF
DC=DE

∴At△DCF≌Rt△DEB(HL),
∴CF=EB.
(2)∵Rt△DCF≌Rt△DEB,
∴∠DFC=∠B.
∵∠DFC+∠AFD=180°,
∴∠CAB+∠AFD=180°.
(1)根据角平分线的性质可以得出DC=DE,在证明△DCF≌△DEB就可以得出CF=EB;
(2)由△DCF≌△DEB可以得出∠DFC=∠B,再根据平角的性质就可以得出结论.

全等三角形的判定与性质;角平分线的性质.

本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,平角的性质的运用,解答时证明三角形全等是关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.