在圆x2+y2=4上与直线4x+3y-12=0距离最小的点的坐标是_.
题目
在圆x2+y2=4上与直线4x+3y-12=0距离最小的点的坐标是______.
答案
解
:过圆心O向直线4x+3y-12=0作垂线OP,与圆交于点P,则P点到直线距离最小.
∵OP垂直于直线4x+3y-12=0,∴斜率为
∴OP的方程为y=
x
由
,得,x=
,y=
或x=-
,y=-
舍去.
故答案为
(,)若把直线4x+3y-12=0向圆平行移动,成为圆的切线时,切点到直线4x+3y-12=0距离最小,所以圆心与直到线4x+3y-12=0距离最小的点连线垂直于直线4x+3y-12=0,只需求出过圆心的直线4x+3y-12=0的垂线方程,与圆方程联立,解出交点,即为所求.
直线与圆的位置关系.
本题主要考查了直线与圆的位置关系的判断,其中综合考查了学生的理解力与转化的能力.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点