数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2, (1)求常数p的值; (2)证明:数列{an}是等差数列.

数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2, (1)求常数p的值; (2)证明:数列{an}是等差数列.

题目
数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2
(1)求常数p的值;
(2)证明:数列{an}是等差数列.
答案
(1)当n=1时,a1=pa1,若p=1时,a1+a2=2pa2=2a2
∴a1=a2,与已知矛盾,故p≠1.则a1=0.
当n=2时,a1+a2=2pa2,∴(2p-1)a2=0.
∵a1≠a2,故p=
1
2

(2)由已知Sn=
1
2
nan,a1=0.
n≥2时,an=Sn-Sn-1=
1
2
nan-
1
2
(n-1)an-1
an
an−1
=
n−1
n−2
.则
an−1
an−2
=
n−2
n−3
a3
a2
=
2
1

an
a2
=n-1.∴an=(n-1)a2,an-an-1=a2
故{an}是以a2为公差,以a1为首项的等差数列.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.