证明G为三角形ABC所在平面内一点,GA+GB+GC=0点G是三角形ABC的重心

证明G为三角形ABC所在平面内一点,GA+GB+GC=0点G是三角形ABC的重心

题目
证明G为三角形ABC所在平面内一点,GA+GB+GC=0点G是三角形ABC的重心
GA GB GC 0为向量
1楼的我会就不会这个GA+GB+GC=0=>点G是三角形ABC的重心
答案
取BC中点D,连结并延长GD至E,使DE=GD,则四边形BGCE是平行四边形
∴向量GB=向量CE
∴向量GB+向量GC=向量CE+向量GC=向量GE
由向量GA+向量GB+向量GC=0得:向量GB+向量GC=-向量GA=向量AG
∴向量AG和向量GE共线===>A、G、E三点共线
而D在GE上,∴A、G、D三点共线
而点D又是BC中点,∴AD(即AG)是三角形ABC中BC边上的中线
同理可证BG是AC边上的中线,CG是AB边上的中线
∴点G是三角形ABC的重心
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.