△ABC中∠C=90°,CA=CB,CD⊥AB于D,CE平分∠BCD交AB于E,AF平分∠CAB交CD于F,交BC于G.求证:EF//BC
题目
△ABC中∠C=90°,CA=CB,CD⊥AB于D,CE平分∠BCD交AB于E,AF平分∠CAB交CD于F,交BC于G.求证:EF//BC
答案
证明:只需证明△ADF≌△CDE.进而得到△DEF为等腰直角三角形,根据∠DEF = ∠B = 45度,同位角相等,两直线平行.得到EF‖BC.
现在来证△ADF≌△CDE.
易得∠ADF = ∠CDE = 90度,AD = CD,∠DAF = ∠DCE = 22.5度.
所以△ADF≌△CDE(ASA).
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点