关于线性代数的问题:若任一n维非零向量都是n阶矩阵A的特征向量,为什么A就有n个线性无关的特征向量呢?求亲们解释.
题目
关于线性代数的问题:若任一n维非零向量都是n阶矩阵A的特征向量,为什么A就有n个线性无关的特征向量呢?求亲们解释.
答案
既然任何一个n维非零向量都是A的特征向量
那么把n阶单位阵的每一列都取出来,这n个向量线性无关,并且都是A的特征向量
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点